skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lyu, Zhiqiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The South American summer monsoon (SASM) profoundly influences tropical South America’s climate, yet understanding its low-frequency variability has been challenging. Climate models and oxygen isotope data have been used to examine the SASM variability over the last millennium (LM) but have, at times, provided conflicting findings, especially regarding its mean-state change from the Medieval Climate Anomaly to the Little Ice Age. Here, we use a paleoclimate data assimilation (DA) method, combining model results and δ18O observations, to produce a δ18O-enabled, dynamically coherent, and spatiotemporally complete austral summer hydroclimate reconstruction over the LM for tropical South America at 5-year resolution. This reconstruction aligns with independent hydroclimate and δ18O records withheld from the DA, revealing a centennial-scale SASM intensification during the MCA-LIA transition period, associated with the southward shift of the Atlantic Intertropical Convergence Zone and the strengthening Pacific Walker circulation (PWC). This highlights the necessity of accurately representing the PWC in climate models to predict future SASM changes. 
    more » « less
  2. This archive contains the climate reconstruction of South American summer monsoon over 850–1850 CE at 5-year resolution by combining the isotope-enabled Community Earth System Model with isotopic proxy records through data assimilation. For a complete description of the experimental design, see the associated publication. Each NetCDF file corresponds to one variable. For each variable, along with the reconstruction, an estimation of the uncertainty is provided. All fields are anomalies relative to the 850–1850 CE period. 
    more » « less